
Theor Chim Acta (1993) 84:377-384 Theoretica
Chimica Acta
© Springer-Verlag 1993

Performance visualization for parallel programs

Ewing Lusk*
Argonne National Laboratory, Argonne, IL 60439, USA

Received October 1, 1991/Accepted December 5, 1991

Summary. We describe here a set of graphical performance visualization tools
that have been developed at Argonne National Laboratory for increasing one's
understanding of the behavior of parallel programs

Key words: Parallel programs - Graphical performance visualization

1. Introduction

Parallel programming is still a highly experimental science in which the designs
of both user and system programs are undergoing simultaneous study. System
implementors tune systems i n response to experimental data from users, and
users try to understand the effects of decisions made for them by system
implementors as well as the effects of variations in the parallel algorithms being
executed by their programs.

Collecting timing statistics and measuring speedups is often insufficient for
understanding why the results are what they are. This is because in a sequential
program, we know the sequence of events, whereas in a parallel program, not
only is the precise sequence of events unknown to us, but it changes from one
run to the next. In most cases, we have some expectation of the rough sequence
of events, the overall "behavior" of the program, but in the parallel case it is
very difficult to deduce from readily available statistics whether the program
actually behaved according to our expectations or not. A typical situation is
one in which our intuition has told us that near-linear speedups should occur,
but execution times (easy to measure) tell us that we are notget t ing them. It is
often not at all clear what to do next.

* This work was supported by the Applied Mathematical Sciences subprogram of the Office of
Energy Research, U.S. Department of Energy, under contract W-31-109-Eng-38

378 E. Lusk

2. Performance visualization tools

A family of tools for helping with this problem is just beginning to evolve.
Unlike profiling tools such as Gauge [5], these tools try to capture the precise
sequence of events occurring during program execution as opposed to counting
those events. A minimal amount of data about each event is captured in a logfile
of some kind, and the log is then examined in post-mortem fashion. Real-time
display of events being logged is possible, but usually unproductive, because the
subsequences one is interested in occur so rapidly.

Implementation of such tools raises a number of issues:

• The log must be captured with an absolutely minimal impact on the perfor-
mance of the program. Otherwise the insights gathered by examining the log will
not really apply to the production version of the program. This means buffering
of events in memory, dumping to external storage without stopping execution,
and little or no forced synchronization among multiple processes.

• The precise nature of the events to be logged is still very much a matter for
debate. Different systems will have different "critical" system events, and of
course different user programs will have different events altogether. Logging of
all low-level events, such as all locking and unlocking operations, or all messages
sent and received, while sometimes useful, may swamp the logging mechanism
without providing real insight into parallel program behavior. Flexibility in
specifying which events are to be logged is crucial.

• Given a mechanism for efficient logging and a decision about just what events
should be logged, it remains to find a display mechanism that promotes
reconstruction of the sequence of events and an understanding of how it was
caused by the program specification. Both static and dynamic displays have been
used, and each approach has its advantages. The fact that we are focusing here
on parallel programs almost mandates a graphics rather than a text display. Of
course implementation of such a program currently involves one in decisions
about graphics languages, window systems, etc.

Many researchers are taking up these challenges. One of the most advanced
systems in this category is Paragraph [6], a logfile display program developed at
Oak Ridge National Laboratory. In general Paragraph provides more views of
logfile information than the tools described here, although these systems provide
more depth in the views they do provide.

3. Layers of parallel programs

Figure 1 shows some of the layers that may appear in the structure of parallel
application programs. They provide a context in which to describe some of the
tools.

At the bottom layer are the machines we are trying to utilize. Here we assume
they are parallel machines, chosen to provide either current maximum performance

- or to provide an environment for the development of programs to run on the fastest
machines of the future. They come in a variety of architectures. Those we are using
at Argonne include a Sequent Symmetry, BBN TC-2000, Intel IPSC/860, and
networks of workstations from Sun, Next, IBM, and Silicon Graphics. We are
preparing our tools for use in the Intel Touchstone Delta, with 520 1860 nodes.

Performance visualization for parallel programs 379

Application
(provides results)

T
High-level Programming System

(provides programmer productivity)

T
System for programming parallel computers

(provides portability)

T
Vendor-supplied software

(provides usability)

T
Computers with parallel Architectures

(provide cycles) Fig. 1. Layers of a parallel application

The next level up consists of the vendor software to express and control
parallelism, necessary in order to use the machines. Since standards for such
primitives do not exist, and the vendors compete with each other in offering different
programming models and primitive operations, this software is portable neither
syntactically nor sematically. That is, not only do vendors offer different names
for similar functions, but in many cases radically different models of computation
and slightly different semantics for very similar operations. This is not a criticism;
at this stage in the development of parallel programming paradigms it is necessary
to explore alternatives competitively.

Nonetheless, with software lifetimes increasing and hardware lifetimes decreas-
ing, it is more clear than ever that one is liable to be developing software on one
machine which will be run on another. Thus portability becomes an important
concern in any project, and a number of systems for writing portable programs
by hiding the vendor software beneath a layer of machine-independent primitives
that implement a portable computational model have evolved. At the lower level
we are discussing here, such systems are typically subroutine libraries for low-level
languages such as C and Fortran. One such system developed at Argonne is
described in [1]. It has served as the foundation for several other related systems,
and for the current such system under development at Argonne, called p4.

The next layer up represents the attempt to bring to parallel programming the
benefits of high-level languages. Such languages provide the usual programmer
productivity benefits and when combined with chunks of sequential code written
in low-level languages for efficiency, need not have a negative impact on
performance. At Argonne we are using two systems based on logic, PCN [2] and
the Aurora Parallel Prolog system [7].

At the highest level there are application-specific systems, which hide all of the
layers below from the end user. We will not be concerned with this layer here.

4. Some program visualization systems

In this section we describe some of the systems that have been developed and
used at Argonne National Laboratory to better understand the behavior of

380 E. Lusk

parallel algorithms. They have been developed in conjunction with real systems
and applications, in order to understand the results of design decisions in those
systems. In every case they have had a major impact on the algorithms and
ultimately on the efficiency of these systems. They occur at both the low-level
portability layer and the high-level parallel language layer in Fig. 1. The tools are
upshot, which displays events and states in parallel time lines, ravel, which
animates message-passing programs, and wamtraee, an animation system for
parallel Prolog.

4.1. Collecting log information

There is no need for a log collection mechanism to be very tightly integrated with
the log display mechanism. Both upshot and ravel use the alog package for
creating logfiles. It consists of a set of C macros and Fortran-callable subroutines
for logging arbitrary events, with event types arbitrarily by the programmer. An
event consists of an event type, a process id, a timestamp, and one integer and
one string of data. Events are collected in local memory by each process and only
written to disk when the run is complete. After the run is over the separate
logfiles are merged on the timestamps to produce a single properly sorted logfile.
Optionally, the user prepares a second file defining process states by specifying
an entry and exit event for each state. These two files are the input to both upshot
and ravel.

4.2. Upshot

Upshot (Fig. 2) shows a horizontal time line for each process, with colored bars
to represent different states. It is possible to scroll smoothly through time with
scrollbars at the top of the display.

One can also mouse-click on specific events to pop up data boxes that show
the rest of the data logged in the event. We have found this type of display
particularly valuable when the parallel program contained work units of widely
varying grain size and changed its behavior during the run. Our parallel
automated reasoning program Roo [8] is an excellent example of this type of
program. Upshot has been used to trace programs written in Strand [4], PCN [2],
Prolog, and Fortran, as well as C.

4.3. Ravel

Ravel is somewhat specialized to message-passing programs, and is used for
showing the patterns of message flow as well as the lengths of message queues,
in addition to the states of processes.

In Fig. 3 we see ravel displaying the very same logfile as displayed by upshot
in Fig. 2. The display shows sixteen processes working on a solution of a
Dirichlet problem in which each process carries out an update of its region of the
grid, exchanges boundary information with its neighbors, and then carries out
the next iteration. At the moment, process 6 is sending boundary information to
process 5, processes 1, 7, and 18 can be seen by their color to be computing, and
most of the other processes are waiting to receive messages. The small numbers

Performance visualization for parallel programs 381

[Zoom-o.t]i
P a g e v i e w

Graph v i e w
0

zoomstep: I

1 0 0 : o~ate 4

102: ~nd~ 5

101: r~eive 6

4: u o r k i ~ 7

5: end work 0

8: wait rece ive 9
IO

11

IZ

13

1~

15

1&

U PS H OT
Zoom-in i[Display Options]1 s ta reDef in i t ion II Reset II Quit I

i - - - - I ++g + 'e :
l [] [] [] l~rm+--.m++.++mm+mmmmmmm.~m.+'+mm++ . ~ r l d l o g l 6 I

k"4 5i::: '

::L!::: " :,+~..~.L " ". I t,, I , " , : :

I f l 6 ~ !:::::::-..:.L: ; ' I ~ I ~

, ,II+ ~ I I _ +7'@mi'i;l'

_ _ . _ J P,oc: + OAT~ it_ _.+

I TIME: 3083~2 ' ' |

I I . .b i , , , , i i t I iiIt~1 lid

44 i l i S l ~ " " ' III

. ~ I'1

mr

I i I I

pl '~+ i III,;I ' I1'
PROC: 13 DAT.~ u ~
EVENT: 6 work~ 14
TIME: 3168513 col msg I . ~ ~ ~,..~.~ r, ~] . 7 . 1 i i i I

r ~ (4 IIIII I 'hi l l , '

I I I I I
3ZOO 3250 3300 3350 3400 3000 3050 3100 3150

t i m e i n m i l l i s e c o n d s

4 I I ~ I

F i l e p a g e s :

Z II 3 II

State file:

~rid. sts]

wai t_~sg

i

working

Fig. 2. Upshot view with events and popup data boxes

beneath the processes give the length of the message queues. In some problems
these message queue lengths provide valuable clues about bottlenecks in the
computation.

It is possible with ravel to move the processes around with the mouse to
achieve a pattern of processes that is particularly useful for understanding the
message flow. Here the processes have been arranged into a grid that reflects the
portions of the grid they are responsible for.

4.4. Wamtrace

Wamtraee [3] is at the high-level programming system layer, since it is tied to a
particular programming system.

It is portable across machines, but specialized to one particular parallel
programming mechanism, the Aurora parallel Prolog system [7]. Its logging
mechanism does not depend on a microsecond timer, but rather uses shared
memory to sequence events in a pair of buffers. Events are buffered by a separate
process, and written to a file concurrently with program execution as the internal
buffers fill up. Thus there is no strict limit to the number of events that can be

382 E. Lusk

i 2 "~].

[:ii~i~iiii ii~i!~ili

)..

Fig. 3. Ravel

~iiiiii~:

F i l e : . q r i d l o g 1 6

receivad by task 14, From 0 : r t n t t ms9
User event number 4: monad 13 uorkin9
User event number 5: monad G done uork
sent from task G, to 2 : rou ms9
sent From task B, to 10 : row ms9
received by task 2, from G : reu ms9
User event number G: monad 2 col ms9
received by task 2, From I : col ms9
User event number 6; monad 2 cot ms9
sent from task 6, to 5 : cot meg

E v e n t speed:
EnvelopG speed:

i l P r i n t E v e n t s

[-]Debug E v e n t s

[] Draw ~rrows

[]Draw Envelope

[]Print Labels

[]Grid

1oo ~ I~

logged. The events logged are "system" events of importance to the behavior of
parallel Prolog programs: the creation and elimination of parallel choice points,
and the execution of parallel alternatives emanating from those choice points. (It
is also possible for the user to log events from the Prolog program being
executed, but graphical interpretation of them requires modifying the wamtrace
program itself.) These events are displayed dynamically, with a dynamically
changing tree-shaped representation of the Prolog computation, with representa-
tions of the processes exploring it moving around on the tree in an illustration

Performance visualization for parallel programs 383

~ l z

Rurora TracinQ Focilitq single step 2

Directory: Trace File:

Events (897] 0

Time [4181 0 I |

Retire Processes [10]

Hi9h Hater Hark [10] 11111

Speed [1003 0 [

I 22~2

I 2262

I

I
El zoo

T
? do_co.and

7 O
~ save_in~tances

perm perm

Fig. 4. Wamtrace

of the dispatching strategy. Wamtrace has been used both for tuning the Aurora
system and for understanding the behavior of application programs.

Wamtraee was chronologically the first of the three systems described in this
paper. It was developed in conjunction with the research into various dispatching
strategies for Aurora.

5. Conclusions and future work

The systems described here have been useful in our study of parallel algorithms
expressed in both high- and low-level languages. We believe that high-level
parallel programming languages like Strand and PCN represent significant
strides in the progress toward a usable parallel programming environment. At
the same time, it is clear that the more abstract the programming model (and
therefore the easier it is to compose a correct parallel program specification), the
more difficult it will be to understand the precise sequence of events it causes on

384 E. Lusk

a particular invocat ion and therefore the reasons for its performance characteris-
tics. Therefore tools for understanding the behavior o f programs specified in
such high-level languages will be critical if these languages and the parallel
computers they direct are to enter the mainstream of high-performance comput-
ing.

Curren t ly these systems are good for examining the execution traces f rom
runs with up to about fifty processes. We are particularly interested in extensions
o f these systems that will be suitable for displaying the activities of programs
running on parallel machines with hundreds of nodes. We are also planning
more general animat ion systems, in particular for data structure animation.

Upshot is available by anonymous ftp f rom info.mcs.anLgov, where the
directory is pub]upshot and the file is upshot.tar.Z. The companion file alog.tar.Z
contains the logging routines that produce the logfiles to be displayed with
upshot.

References

1. Boyle J, Butler R, Disz T, Glickfeld B, Lusk E, Overbeek R, Patterson J, Stevens R (1987)
Portable programs for parallel processors. Holt, Rinehart, Winston, New York

2. Chandy M, Taylor S (1991) An introduction to parallel programming. Jones and Bartlett, New
York

3. Disz T, Lusk E (1987) A graphical tool for observing the behavior of parallel logic programs. In:
Proc 1987 Symp Logic Programming, p 46

4. Foster I, Taylor S (1990) Strand: New concepts in parallel programming. Prentice-Hall, Engle-
wood Cliffs, NJ

5. Gorlick M, Kesselman C (1987) Timing Prolog programs without clocks. In: Proc 1987 Symp
Logic Programming, p 426

6. Heath MT, Etheridge JA (1991) Visualizing the performance of parallel programs. Techn Rep
ORNL TM-11813, Oak Ridge Natl Lab

7. Lusk E, Butler R, Disz T, Olson R, Overbeek R, Stevens R, Warren DHD, Calderwood A,
Szeredi P, Haridi S, Brand P, Carlsson M, Ciepielewski A, Hausman B (1990) The aurora
or-parallel prolog system. New Generation Computing 7(3):243

8. Lusk E, McCune W, Slaney J (1991) Roo - a parallel theorem prover. Techn Rep MCS-TM-149,
Argonne Natl Lab

