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Summary. We describe here a set of  graphical performance visualization tools 
that have been developed at Argonne National Laboratory for increasing one's 
understanding of the behavior of  parallel programs 
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1. Introduction 

Parallel programming is still a highly experimental science in which the designs 
of  both user and system programs are undergoing simultaneous study. System 
implementors tune systems i n response to experimental data from users, and 
users try to understand the effects of decisions made for them by system 
implementors as well as the effects of variations in the parallel algorithms being 
executed by their programs. 

Collecting timing statistics and measuring speedups is often insufficient for 
understanding why the results are what they are. This is because in a sequential 
program, we know the sequence of events, whereas in a parallel program, not 
only is the precise sequence of events unknown to us, but it changes from one 
run to the next. In most cases, we have some expectation of the rough sequence 
of  events, the overall "behavior" of  the program, but in the parallel case it is 
very difficult to deduce from readily available statistics whether the program 
actually behaved according to our expectations or not. A typical situation is 
one in which our intuition has told us that near-linear speedups should occur, 
but execution times (easy to measure) tell us that we are notget t ing them. It is 
often not at all clear what to do next. 
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2. Performance visualization tools 

A family of tools for helping with this problem is just beginning to evolve. 
Unlike profiling tools such as Gauge [5], these tools try to capture the precise 
sequence of events occurring during program execution as opposed to counting 
those events. A minimal amount of data about each event is captured in a logfile 
of some kind, and the log is then examined in post-mortem fashion. Real-time 
display of events being logged is possible, but usually unproductive, because the 
subsequences one is interested in occur so rapidly. 

Implementation of such tools raises a number of issues: 

• The log must be captured with an absolutely minimal impact on the perfor- 
mance of the program. Otherwise the insights gathered by examining the log will 
not really apply to the production version of the program. This means buffering 
of events in memory, dumping to external storage without stopping execution, 
and little or no forced synchronization among multiple processes. 

• The precise nature of the events to be logged is still very much a matter for 
debate. Different systems will have different "critical" system events, and of 
course different user programs will have different events altogether. Logging of 
all low-level events, such as all locking and unlocking operations, or all messages 
sent and received, while sometimes useful, may swamp the logging mechanism 
without providing real insight into parallel program behavior. Flexibility in 
specifying which events are to be logged is crucial. 

• Given a mechanism for efficient logging and a decision about just what events 
should be logged, it remains to find a display mechanism that promotes 
reconstruction of the sequence of events and an understanding of how it was 
caused by the program specification. Both static and dynamic displays have been 
used, and each approach has its advantages. The fact that we are focusing here 
on parallel programs almost mandates a graphics rather than a text display. Of 
course implementation of such a program currently involves one in decisions 
about graphics languages, window systems, etc. 

Many researchers are taking up these challenges. One of the most advanced 
systems in this category is Paragraph [6], a logfile display program developed at 
Oak Ridge National Laboratory. In general Paragraph provides more views of 
logfile information than the tools described here, although these systems provide 
more depth in the views they do provide. 

3. Layers of parallel programs 

Figure 1 shows some of the layers that may appear in the structure of parallel 
application programs. They provide a context in which to describe some of the 
tools. 

At the bottom layer are the machines we are trying to utilize. Here we assume 
they are parallel machines, chosen to provide either current maximum performance 

- or to provide an environment for the development of programs to run on the fastest 
machines of the future. They come in a variety of architectures. Those we are using 
at Argonne include a Sequent Symmetry, BBN TC-2000, Intel IPSC/860, and 
networks of workstations from Sun, Next, IBM, and Silicon Graphics. We are 
preparing our tools for use in the Intel Touchstone Delta, with 520 1860 nodes. 
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The next level up consists of the vendor software to express and control 
parallelism, necessary in order to use the machines. Since standards for such 
primitives do not exist, and the vendors compete with each other in offering different 
programming models and primitive operations, this software is portable neither 
syntactically nor sematically. That is, not only do vendors offer different names 
for similar functions, but in many cases radically different models of computation 
and slightly different semantics for very similar operations. This is not a criticism; 
at this stage in the development of parallel programming paradigms it is necessary 
to explore alternatives competitively. 

Nonetheless, with software lifetimes increasing and hardware lifetimes decreas- 
ing, it is more clear than ever that one is liable to be developing software on one 
machine which will be run on another. Thus portability becomes an important 
concern in any project, and a number of systems for writing portable programs 
by hiding the vendor software beneath a layer of machine-independent primitives 
that implement a portable computational model have evolved. At the lower level 
we are discussing here, such systems are typically subroutine libraries for low-level 
languages such as C and Fortran. One such system developed at Argonne is 
described in [1]. It has served as the foundation for several other related systems, 
and for the current such system under development at Argonne, called p4. 

The next layer up represents the attempt to bring to parallel programming the 
benefits of high-level languages. Such languages provide the usual programmer 
productivity benefits and when combined with chunks of sequential code written 
in low-level languages for efficiency, need not have a negative impact on 
performance. At Argonne we are using two systems based on logic, PCN [2] and 
the Aurora Parallel Prolog system [7]. 

At the highest level there are application-specific systems, which hide all of the 
layers below from the end user. We will not be concerned with this layer here. 

4. Some program visualization systems 

In this section we describe some of the systems that have been developed and 
used at Argonne National Laboratory to better understand the behavior of 
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parallel algorithms. They have been developed in conjunction with real systems 
and applications, in order to understand the results of design decisions in those 
systems. In every case they have had a major impact on the algorithms and 
ultimately on the efficiency of these systems. They occur at both the low-level 
portability layer and the high-level parallel language layer in Fig. 1. The tools are 
upshot, which displays events and states in parallel time lines, ravel, which 
animates message-passing programs, and wamtraee, an animation system for 
parallel Prolog. 

4.1. Collecting log information 

There is no need for a log collection mechanism to be very tightly integrated with 
the log display mechanism. Both upshot and ravel use the alog package for 
creating logfiles. It consists of a set of C macros and Fortran-callable subroutines 
for logging arbitrary events, with event types arbitrarily by the programmer. An 
event consists of an event type, a process id, a timestamp, and one integer and 
one string of data. Events are collected in local memory by each process and only 
written to disk when the run is complete. After the run is over the separate 
logfiles are merged on the timestamps to produce a single properly sorted logfile. 
Optionally, the user prepares a second file defining process states by specifying 
an entry and exit event for each state. These two files are the input to both upshot 
and ravel. 

4.2. Upshot 

Upshot (Fig. 2) shows a horizontal time line for each process, with colored bars 
to represent different states. It is possible to scroll smoothly through time with 
scrollbars at the top of the display. 

One can also mouse-click on specific events to pop up data boxes that show 
the rest of the data logged in the event. We have found this type of display 
particularly valuable when the parallel program contained work units of widely 
varying grain size and changed its behavior during the run. Our parallel 
automated reasoning program Roo [8] is an excellent example of this type of 
program. Upshot has been used to trace programs written in Strand [4], PCN [2], 
Prolog, and Fortran, as well as C. 

4.3. Ravel 

Ravel is somewhat specialized to message-passing programs, and is used for 
showing the patterns of message flow as well as the lengths of message queues, 
in addition to the states of processes. 

In Fig. 3 we see ravel displaying the very same logfile as displayed by upshot 
in Fig. 2. The display shows sixteen processes working on a solution of a 
Dirichlet problem in which each process carries out an update of its region of the 
grid, exchanges boundary information with its neighbors, and then carries out 
the next iteration. At the moment, process 6 is sending boundary information to 
process 5, processes 1, 7, and 18 can be seen by their color to be computing, and 
most of the other processes are waiting to receive messages. The small numbers 
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Fig. 2. Upshot  view with events and popup data boxes 

beneath the processes give the length of the message queues. In some problems 
these message queue lengths provide valuable clues about bottlenecks in the 
computation. 

It is possible with ravel to move the processes around with the mouse to 
achieve a pattern of processes that is particularly useful for understanding the 
message flow. Here the processes have been arranged into a grid that reflects the 
portions of the grid they are responsible for. 

4.4. Wamtrace 

Wamtraee [3] is at the high-level programming system layer, since it is tied to a 
particular programming system. 

It is portable across machines, but specialized to one particular parallel 
programming mechanism, the Aurora parallel Prolog system [7]. Its logging 
mechanism does not depend on a microsecond timer, but rather uses shared 
memory to sequence events in a pair of buffers. Events are buffered by a separate 
process, and written to a file concurrently with program execution as the internal 
buffers fill up. Thus there is no strict limit to the number of events that can be 
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logged. The events logged are "system" events of importance to the behavior of 
parallel Prolog programs: the creation and elimination of parallel choice points, 
and the execution of parallel alternatives emanating from those choice points. (It 
is also possible for the user to log events from the Prolog program being 
executed, but graphical interpretation of them requires modifying the wamtrace 
program itself.) These events are displayed dynamically, with a dynamically 
changing tree-shaped representation of the Prolog computation, with representa- 
tions of the processes exploring it moving around on the tree in an illustration 
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Fig. 4. Wamtrace 

of the dispatching strategy. Wamtrace has been used both for tuning the Aurora 
system and for understanding the behavior of  application programs. 

Wamtraee was chronologically the first of the three systems described in this 
paper. It was developed in conjunction with the research into various dispatching 
strategies for Aurora. 

5. Conclusions and future work 

The systems described here have been useful in our study of parallel algorithms 
expressed in both high- and low-level languages. We believe that high-level 
parallel programming languages like Strand and PCN represent significant 
strides in the progress toward a usable parallel programming environment. At 
the same time, it is clear that the more abstract the programming model (and 
therefore the easier it is to compose a correct parallel program specification), the 
more difficult it will be to understand the precise sequence of events it causes on 
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a particular invocat ion and therefore the reasons for its performance characteris- 
tics. Therefore tools for understanding the behavior  o f  programs specified in 
such high-level languages will be critical if these languages and the parallel 
computers  they direct are to enter the mainstream of  high-performance comput-  
ing. 

Curren t ly  these systems are good for examining the execution traces f rom 
runs with up to about  fifty processes. We are particularly interested in extensions 
o f  these systems that  will be suitable for displaying the activities of  programs 
running on parallel machines with hundreds of  nodes. We are also planning 
more  general animat ion systems, in particular for data  structure animation.  

Upshot is available by anonymous  ftp f rom info.mcs.anLgov, where the 
directory is pub]upshot and the file is upshot.tar.Z. The companion  file alog.tar.Z 
contains the logging routines that  produce the logfiles to be displayed with 
upshot. 
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